Еремеев Виктор Анатольевич

Автор: Еремеев В.А.
Любимый польский город Гданьск

Доктор физико-​математических наук, доцент.

Главный научный сотрудник Южного научного центра РАН.
Профессор Гданьского университета технологии (Politech­nika Gdańska).
Ведущий научный сотрудник, Научно-​исследовательская лаборатория проблем прочности, динамики и ресурса; Научно-​исследовательский институт механики; Нижегородский государственный университет им. Н.И. Лобачевского.
Ведущий научный сотрудник, Лаборатория механики биосовместимых материалов, НОЦ «Материалы», Донской государственный технический университет.

Член Американского математического общества (AMS), Общества прикладной математики и механики (GAMM) (до 2014), The Inter­na­tional Research Cen­ter for Math­e­mat­ics & Mechan­ics of Com­plex Sys­tems (M&MoCS).
Член редколлегии журналов: Math­e­mat­ics and Mechan­ics of Solids; ZAMM; Acta Mechan­ica; Math­e­mat­ics and Mechan­ics of Com­plex Sys­tems; Archive of Applied Mechan­ics; Sym­me­try; Tech­nis­che Mechanik; Nanome­chan­ics Sci­ence and Tech­nol­ogy: an Inter­na­tional Jour­nal; Вестник ПНИПУ. Механика; Вестник ЮНЦ РАН (Наука юга России); Проблемы прочности и пластичности; World Jour­nal of Mechan­ics.
Член диссертационных советов ЮФУ01.02, Д212.208.06. , Д212.058.03.
Приглашенный редактор (guest-​editor) ZAMM (2009, 2010, 2011, 2014), IJES (2014), CMAT (2015, 2019, 2020), MMS (2015, 2021), Sym­me­try (2020, 2021), Math­e­mat­ics (2020), Nano­ma­te­ri­als (2020), Mechan­ics Research Com­munca­tions (2021).

Тел. +78632975282 (сл.), +48(0)177432010. +49(0)3455528436 (w).

E-​mail: Этот адрес электронной почты защищён от спам-​ботов. У вас должен быть включен JavaScript для просмотра.; Этот адрес электронной почты защищён от спам-​ботов. У вас должен быть включен JavaScript для просмотра.; Этот адрес электронной почты защищён от спам-​ботов. У вас должен быть включен JavaScript для просмотра.; Этот адрес электронной почты защищён от спам-​ботов. У вас должен быть включен JavaScript для просмотра.;Этот адрес электронной почты защищён от спам-​ботов. У вас должен быть включен JavaScript для просмотра.Этот адрес электронной почты защищён от спам-​ботов. У вас должен быть включен JavaScript для просмотра.

Researcher ID B-​14782010; Sco­pus Author ID 12795763700; Google scholar cita­tions; Publon;


Официальная страница на сайте университета здесь, на сайте кафедры здесь, можно смотреть также здесь и здесь, на сайте MLU hier, на сайте «Корпуса экспертов» здесь.


Биография

Окончил механико-​математический факультет (мехмат) Ростовского госуниверситета (РГУ) по специальности «механика» в 1985г.
С 1985 г. по 1988 г. - в очной аспирантуре при кафедре теории упругости мехмата РГУ.
В 1988 году поступил на работу ассистентом на кафедру информатики и вычислительного эксперимента РГУ. С 1988 г. по 1998 г. работал на кафедре информатики и вычислительного эксперимента РГУ.
С 1998 г. по 2015 г. – на кафедре математического моделирования РГУ.
В 1990 г. защитил кандидатскую диссертацию на тему «Устойчивость двухфазных нелинейно-​термоупругих тел» по специальности 01.02.04 – механика деформируемого твердого тела.
В 1996 г. получил звание доцента.
В 2004 г. защитил докторскую диссертацию по теме «Механика двухфазных тел с микроструктурой при конечных деформациях» в Институте проблем машиноведения РАН (Санкт-​Петербург.)
С 2004 г. по 2017 г. — зав. лаб. механики активных материалов в ЮНЦ РАН.
С 2010 г. по 2011 г. - научный сотрудник университета Мартина Лютера Халле-​Виттенберг (Martin-​Luther-​Universität Halle-​Wittenberg (MLU)).
С 2012 по 2015 г. — научный сотрудник университета Отто фон Герике Магдебург (Otto-​von-​Guericke-​Universität Magde­burg (OvGU)).
С 2015 по 2017 г. — главный научный сотрудник Института математики, механики и компьютерных наук ЮФУ.
C 01.09.2015 по 31.08.2017 г. — профессор Politech­nika Rzes­zowska im. Ignacego Lukasiewicza.
C 01.07.2017 по 31.12.2017 г. — ведущий научный сотрудник Института математики, механики и компьютерных наук ЮФУ.
C 01.07.2018 по 31.12.2018 г. — главный научный сотрудник Института математики, механики и компьютерных наук ЮФУ.
C 01.07.2019 по 31.12.2019 г. — главный научный сотрудник Института математики, механики и компьютерных наук ЮФУ.

С 01.08.2017 — профессор Politech­nika Gdańska, факультет Inżynierii Lądowej i Środowiska (Depart­ment of Mechan­ics of Mate­ri­als and Struc­tures, Fac­ulty of Civil and Envi­ron­men­tal Engi­neer­ing, Gdansk Uni­ver­sity of Technology).

Трое детей.


Научные визиты


Gdansk, Poland, Insti­tute of Fluid-​Flow Machin­ery of the Pol­ish Acad­emy of Sci­ences (2003, 2005, 2008, 2009).
Halle, Ger­many, Martin-​Luther Uni­ver­sity Halle-​Wittenberg (2007, 2008, 2009, 2010).
Colom­bia, National Uni­ver­sity of Colom­bia, Bogota (2008, 2012).
Lublin, Poland, Politech­nika Lubel­ska (2011, 2012).
Rome (Cis­terna di Latina), The Inter­na­tional Research Cen­ter for Math­e­mat­ics & Mechan­ics of Com­plex Sys­tems (M&MoCS) (2014).
Rome, Vis­it­ing Pro­fes­sor for research activ­i­ties at Sapienza Uni­ver­sity of Rome, Italy (2015).
Paris, Vis­it­ing Pro­fes­sor for research activ­i­ties at Uni­ver­sité Paris-​Est Créteil Val de Marne, France (2015).
Genoa, Vis­it­ing Pro­fes­sor at Uni­ver­sita Degli Stu­dia di Gen­ova, Italy (2016).
Rome, Vis­it­ing Pro­fes­sor for research activ­i­ties at Sapienza Uni­ver­sity of Rome, Italy (2017) (pro­file).
Cagliari, Vis­it­ing Pro­fes­sor at Uni­ver­sita di Cagliari, Italy (2017) (pro­file).
Alghero, Vis­it­ing Pro­fes­sor at Uni­ver­sità degli Studi di Sas­sari, Italy (2017) (pro­file).
Alghero, Vis­it­ing Pro­fes­sor at Uni­ver­sità degli Studi di Sas­sari, Italy (2019).
Paris, Vis­it­ing Pro­fes­sor for research activ­i­ties at Uni­ver­sité Paris-​Est Créteil Val de Marne, France (2019).
Nancy, Vis­it­ing Pro­fes­sor for research activ­i­ties at Lab­o­ra­toire LEM3, UMR CNRS 7239, Uni­ver­sité de Lor­raine, France (2019).


Гранты

Принимал участие в выполнении грантов РНФ (No 151910008, No 1519-​10008-​P), программы мегагрантов (No. 14.Z50.31.0046; No. 14.Y26.31.0031), РФФИ, Конкурсного центра по фундаментальному естествознанию, по программе «Университеты России» Министерства образования, по программам ФНЦ «Интеграция», Минпромнауки, Фонда содействия отечественной науки, Фонда Сороса, CRDF, ISF, DFG, DAAD, Кассы Юзефа Мяновского, 7й Европейской рамочной программы (7th Frame­work Pro­gramme of Euro­pean Union), Ital­ian MIUR «PRIN 20122015 unit MeM­oCS», Prog­etto ATE­NEO LA SAPIENZA 2013, Vis­it­ing Pro­fes­sor­ship award 2015, 2017 La Sapienza и др.


Награды

Inter­na­tional Prize “Tul­lio Levi-​Civita” for the Math­e­mat­i­cal and Mechan­i­cal Sci­ences — 2018

Royal Soci­ety Wolf­son Vis­it­ing Fel­low­ships20212022


Книги/​Books

  1. Еремеев В.А., Зубов Л.М. Механика упругих оболочек. М.: Наука, 2008, 280 с. (link, в библиотеках EqWorld, Mech­Math)
  2. Еремеев В.А., Зубов Л.М. Основы механики вязкоупругой микрополярной жидкости. Ростов-​на-​Дону: Изд-​во ЮНЦ РАН, 2009. 128 с. (link, в библиотеках EqWorld, Mech­Math)
  3. Lebe­dev, L.P., Cloud, M.J, Ere­meyev, V.A. Ten­sor Analy­sis with Appli­ca­tions in Mechan­ics. World Sci­en­tific, New Jer­sey et al. 2010. 363 p. (link)
  4. Lebe­dev L.P., Cloud M.J, Ere­meyev V.A. Advanced Engi­neer­ing Analy­sis: Cal­cu­lus of Vari­a­tions and Func­tional Analy­sis with Appli­ca­tions in Mechan­ics. World Sci­en­tific, New Jer­sey et al. 2012. 499 p. (link)
  5. Ere­meyev, V.A., Lebe­dev, L.P., Altenbach, H. Foun­da­tions of Microp­o­lar Mechan­ics. Springer­Briefs in Applied Sci­ences and Tech­nol­ogy. Springer­Briefs in Con­tin­uum Mechan­ics. Springer, Hei­del­berg et al. 2013, 125 p. (link, link2)
  6. Ere­meyev, V.A., Lebe­dev, L.P., Ren­don, L. A. Ele­men­tos de mecanica matem­at­ica. Temas de matem­at­i­cas apli­cadas (in Span­ish). Uni­ver­si­dad Nacional de Colom­bia, Bogota, 2013. 197 p. ISBN 9789587613889
  7. Ere­meyev, V.A., Cloud, M. J., Lebe­dev, L.P. Appli­ca­tions of Ten­sor Analy­sis in Con­tin­uum Mechan­ics. World Sci­en­tific, New Jer­sey et al. 2018. 428 p. https://​doi​.org/​10​.​1142​/​10959

Книги под редакцией/​Edited monographs

  1. Altenbach, H., Ere­meyev, V.A. (Eds). Shell-​like Struc­tures: Non-​classical The­o­ries and Appli­ca­tions. Advanced Struc­tured Mate­ri­als. Vol­ume 15, DOI: 10.1007÷9783642218552. Springer, Berlin et al. 2011, 761 p.
  2. Altenbach, H., Ere­meyev, V.A. (Eds). Gen­er­al­ized Con­tinua: from the The­ory to Engi­neer­ing Appli­ca­tions. Series: CISM Inter­na­tional Cen­tre for Mechan­i­cal Sci­ences, Vol. 541. Springer, Wien et al. 2013. 402 p.
  3. Altenbach, H., Ere­meyev, V.A. (Eds). Shell-​like struc­tures: Advanced The­o­ries and Appli­ca­tions. Series: CISM Inter­na­tional Cen­tre for Mechan­i­cal Sci­ences, Vol. 572. Springer, Wien et al. 2017. VII+288 p. ISBN 9783319422770
  4. dell’Isola, Francesco, Ere­meyev, V.A., Porubov, A.V. (Eds). Advances in Mechan­ics of Microstruc­tured Media and Struc­tures. Advanced Struc­tured Mate­ri­als, Vol. 87. Springer, Cham, 2018. VIII+369 p. Print ISBN 9783319736938; Online ISBN 9783319736945. doi https://​doi​.org/​10​.​1007​/​9783-​31973694-​5
  5. Altenbach, H., Belyaev, A., Ere­meyev, V.A., Krivtsov, A., Porubov, A.V. (Eds.) Dynam­i­cal Processes in Gen­er­al­ized Con­tinua and Struc­tures. Advanced Struc­tured Mate­ri­als, Vol. 103. Springer, Cham, 2019. VIII+392 pp. ISBN 9783030116644; doi 10.1007÷9783030116651
  6. Abali, B.E., Altenbach, H., dell’Isola, F., Ere­meyev, V.A., Öch­sner, A. (Eds.) New Achieve­ments in Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics: A Trib­ute to Wolf­gang H. Müller. Series: Advanced Struc­tured Mate­ri­als, vol. 108. Springer, Cham, 2019. VIII+792 pp. ISBN 9783030133061. eBook ISBN 9783030133078. https://​www​.springer​.com/​g​p​/​b​o​o​k​/​9783030133061
  7. Altenbach, H., Chróś­cielewski, J., Ere­meyev, V.A., Wiśniewski, K. (Eds.) Recent Devel­op­ments in the The­ory of Shells. Advanced Struc­tured Mate­ri­als, Vol. 110. Springer, Cham, 2019. XXII+799 pp. ISBN 9783030177461; doi https://​doi​.org/​10​.​1007​/​9783-​03017747-​8
  8. Altenbach, H., Ere­meyev, V., Pavlov, I.S., Porubov, A.V. (Eds.) Non­lin­ear Wave Dynam­ics of Mate­ri­als and Struc­tures. Advanced Struc­tured Mate­ri­als, Vol. 122. Springer, Cham, 2020. XXV+461 pp. ISBN 9783030387075 DOI https://​doi​.org/​10​.​1007​/​9783-​03038708-​2
  9. Aizikovich, S.M., Altenbach, H., Ere­meyev, V., Swain, M.V., Galy­bin, A. (Eds.) Synthe­sis and Frac­ture of Advanced Mate­ri­als for Indus­trial and Med­ical Appli­ca­tions. Advanced Struc­tured Mate­ri­als, Vol. 136. Springer, Cham, 2020. XV+187pp. ISBN 9783030481612 https://​doi​.org/​10​.​1007​/​9783-​03048161-​2
  10. Altenbach H., Ere­meyev V.A., Igum­nov L.A. (eds) Mul­ti­scale Solid Mechan­ics. Strength, Dura­bil­ity, and Dynam­ics. Advanced Struc­tured Mate­ri­als, vol 141. Springer, Cham, 2021. XXIV+499pp. ISBN 9783030549275 DOI https://​doi​.org/​10​.​1007​/​9783-​03054928-​2

Некоторые статьи в журналах (Selected papers in peer reviewed journals)

  1. Yere­meyev, V.A., Zubov, L.M. Equi­lib­rium and sta­bil­ity of non-​linearly elas­tic bod­ies with cav­i­ties con­tain­ing fluid. J. Applied Math­e­mat­ics and Mechan­ics, 1987. 51. No 3. 353356.
  2. Ere­meyev, V.A. Local sta­bil­ity of hydro­sta­tic com­pres­sion states of non-​linearly thermo-​visco-​elastic bod­ies of dif­fer­en­tial type. J. Applied Math­e­mat­ics and Mechan­ics, 1991. 55. No 2. 259265.
  3. Yere­meyev, V.A., Zubov, L.M. Con­di­tions of phase-​equilibrium in non­lin­ear elas­tic media with microstruc­ture. Dok­lady Akademii Nauk. 1992. 322. No 6. 10521056.
  4. Ere­meev, V.A., Zubov, L.M., Karyakin, M.I., Chernega, N.Ya. Cav­i­ta­tion in non­lin­ear elas­tic bod­ies with dis­lo­ca­tions and discli­na­tions. Dok­lady Akademii Nauk. 1992. 326, No 6 968971.
  5. Ere­meev, V.A., Nikitin, E.S. Phase trans­for­ma­tions in elas­tic bod­ies with dis­lo­ca­tions and discli­na­tions. Dok­lady Akademii Nauk. 1995. 345, No 2. 188192.
  6. Zubov, L.M., Ere­meev, V.A. The equa­tions of vis­coelas­tic microp­o­lar fluid. Dok­lady Akademii Nauk. 1996. 351, No 4. 472475.
  7. Yere­meyev, V.A., Zubov, L.M. The the­ory of elas­tic and vis­coelas­tic microp­o­lar liq­uids. J. Applied Math­e­mat­ics and Mechan­ics.1999. 63. No 5. 755767.
  8. Belokon“, A.V., Ere­meyev, V.A., Nased­kin, A.V., Solov’yev, A.N. Par­ti­tioned schemes of the finite-​element method for dynamic prob­lems of acous­to­elec­tro­elas­tic­ity. J Applied Math­e­mat­ics and Mechan­ics, 2000. 64, No 3. 367377.
  9. Ere­meev, V.A., Frei­din, A.B., Sharipova, L.L. Nonunique­ness and sta­bil­ity in prob­lems of equi­lib­rium of elas­tic two-​phase bod­ies. Dok­lady Physics. 2003. 48, 7. 359363.
  10. Ere­meev, V.A. A model of phase tran­si­tions in mul­ti­com­po­nent elas­tic media. Russ­ian Jour­nal of Phys­i­cal Chem­istry. 2003. 77, No 10. 16421644.
  11. Ere­meyev V.A., Pietraszkiewicz W. The non­lin­ear the­ory of elas­tic shells with phase tran­si­tions. J. Elas­tic­ity 2004. 74. No. 1. 6786.
  12. Ere­meyev V. A. Accel­er­a­tion waves in microp­o­lar elas­tic media. Dok­lady Physics, 2005, 50. No. 4. 204206.
  13. Ere­meyev V.A., Sukhov D.A. Con­vec­tive insta­bil­i­ties in ther­mo­vis­coelas­tic microp­o­lar flu­ids. Matemáti­cas: Enseñanza Uni­ver­si­taria. 2005. XIII. No 1. 3142.
  14. Ere­meyev V.A. Pietraszkiewicz W. Local sym­me­try group in the gen­eral the­ory of elas­tic shells. J. Elas­tic­ity. 2006. 85. No 2. P. 125152.
  15. Ere­meyev V.A., Lebe­dev L.P. On the loss of sta­bil­ity of von Mises truss with the effect of pseudo-​elasticity. Matemáti­cas: Enseñanza Uni­ver­si­taria. 2006. XIV. No 2 Diciem­bre. 111118.
  16. Ere­meyev V. A., Ivanova E. A., Moro­zov N. F., Soloviev A. N. On the deter­mi­na­tion of eigen­fre­quen­cies for nanometer-​size objects. Dok­lady Physics, 2006. 51. No. 2. 9397.
  17. Ere­meyev V. A., Ivanova E. A., Moro­zov N. F., Soloviev A. N. Method of deter­min­ing the eigen­fre­quen­cies of an ordered sys­tem of nanoob­jects. Tech­ni­cal Physics. 2007. 52. No. 1. 16.
  18. Ere­meyev V.A., Frei­din A.B., Sharipova L.L. The sta­bil­ity of the equi­lib­rium of two-​phase elas­tic solids. Jour­nal of Applied Math­e­mat­ics and Mechan­ics (PMM). 2007. 71. No 1. 6184.
  19. Ere­meyev V.A., Zubov L.M. On con­sti­tu­tive inequal­i­ties in non­lin­ear the­ory of elas­tic shells. Z.Angew. Math. Mech. (ZAMM). 2007. 87. No. 2. 94101.
  20. Pietraszkiewicz W., Ere­meyev V.A., Konopin­ska V. Extended non-​linear rela­tions of elas­tic shells under­go­ing phase tran­si­tions. Z.Angew. Math. Mech. (ZAMM). 2007. 87. No. 2. 150159.
  21. Ere­meyev V. A., Frei­din A. B., Pavlyuchenko V. N., Ivanchev S. S. Insta­bil­ity of hol­low poly­meric micros­pheres upon swelling. Dok­lady Physics. 2007. 52. No. 1. 3740.
  22. Ere­meyev V. A., Ivanova E. A., Moro­zov N. F., Strochkov S. E. Nat­ural vibra­tions of nan­otubes. Dok­lady Physics. 2007. 52. No 8. 431435
  23. Ere­meyev V. A., Ivanova E. A., Moro­zov N. F., Strochkov S. E. The spec­trum of nat­ural oscil­la­tions of an array of micro– or nanos­pheres on an elas­tic sub­strate. Dok­lady Physics. 2007. 52, No. 12. 699702.
  24. Ere­meyev V.A., Lebe­dev L. P., Ren­don L. A. On the prop­a­ga­tion of accel­er­a­tion waves in ther­mo­elas­tic microp­o­lar media. Revista Colom­biana de Matem­at­i­cas. 2007. 41. No 2. 397406.
  25. Altenbach H., Ere­meyev V.A. Direct approach based analy­sis of plates com­posed of func­tion­ally graded mate­ri­als. Archive of Applied Mechan­ics. 2008. 78, No 10, 775794.
  26. Altenbach H., Ere­meyev V.A. Analy­sis of the vis­coelas­tic behav­ior of plates made of func­tion­ally graded mate­ri­als. Z.Angew. Math. Mech. (ZAMM). 2008. 88, No. 5. 332341.
  27. Altenbach H., Brigad­nov I.A., Ere­meyev V.A. Oscil­la­tions of a magneto-​sensitive elas­tic sphere. Z.Angew. Math. Mech. (ZAMM). 2008. 88, No. 6, 497506.
  28. Ere­meyev V. A., Ivanova E. A., Moro­zov N. F., Strochkov S. E. Nat­ural vibra­tions in a sys­tem of nan­otubes. Jour­nal of Applied Mechan­ics and Tech­ni­cal Physics. 2008. 49, No. 2. 291300.
  29. Altenbach H., Ere­meyev V.A. On the time-​dependent behav­ior of FGM plates. Key Engi­neer­ing Mate­ri­als 2009. 399. 6370
  30. Altenbach H., Ere­meyev V.A. On the bend­ing of vis­coelas­tic plates made of poly­mer foams. Acta Mechan­ica. 2008. 204. No 34. Pp. 137154.
  31. Pietraszkiewicz, W., Ere­meyev, V. A. On nat­ural strain mea­sures of the non-​linear microp­o­lar con­tin­uum.Inter­na­tional Jour­nal of Solids and Struc­tures. 2009. 46. No. 34. 774787.
  32. Pietraszkiewicz, W., Ere­meyev, V. A. On vec­to­ri­ally para­me­ter­ized nat­ural strain mea­sures of the non-​linear Cosserat con­tin­uum. Inter­na­tional Jour­nal of Solids and Struc­tures. 2009. 46. No 1112. 24772480.
  33. Ere­meyev, V. A., Pietraszkiewicz, W. Phase tran­si­tions in ther­mo­elas­tic and ther­mo­vis­coelas­tic shells. Archive of Mechan­ics. 2009. 61, No 1, 4167.
  34. Ere­meyev V. A., Altenbach H., Moro­zov N. F. The Influ­ence of Sur­face Ten­sion on the Effec­tive Stiff­ness of Nano­sized Plates. Dok­lady Physics, 2009, 54, No. 2, 98100.(Translation. Еремеев В.А., Альтенбах Х., Морозов Н.Ф. О влиянии поверхностного натяжения на эффективную жесткость наноразмерных пластин /​/​Доклады РАН. 2009. Т. 424. No. 5. С. 618620.)
  35. Altenbach H., Ere­meyev V.A. On the lin­ear the­ory of microp­o­lar plates. Z. Angew. Math. Mech. (ZAMM). 2009. 89. No. 4. 242256.
  36. Altenbach H., Ere­meyev V.A. Eigen-​vibrations of plates made of func­tion­ally graded mate­r­ial. CMC: Com­put­ers, Mate­ri­als, & Con­tinua. 2009. 9. No 2. 153178.
  37. Altenbach H. Ere­meyev V.A., Indeit­sev D.A., Ivanova E.A., Krivtsov A.M. On the Con­tri­bu­tions of Pavel Andree­vich Zhilin to Mechanic.Tech­nis­che Mechanik, 2009. 29, N 2. 115134.
  38. Altenbach H., Ere­meyev V. A., Moro­zov N. F. Lin­ear the­ory of shells tak­ing into account sur­face stresses. Dok­lady Physics, 2009, 54, No. 12. 531535. (Trans­la­tion. Альтенбах Х., Еремеев В.А., Морозов Н.Ф. Линейная теория оболочек при учете поверхностных напряжений /​/​Доклады РАН. 2009. Т. 429. No. 4. С. 472476.)
  39. Альтенбах Х., Еремеев В.А. Об уравнениях оболочек типа Коссера. Вычислительная механика сплошных сред. 2009. Т. 2, № 4. С. 1118.
  40. Altenbach J., Altenbach H., Ere­meyev V.A. On gen­er­al­ized Cosserat-​type the­o­ries of plates and shells: a short review and bib­li­og­ra­phy. Arch. Appl. Mech. 2010. 80. N 1. Pp. 7392. DOI 10.1007/s00419-0090365-3.
  41. Altenbach H., Ere­meyev V.A., Lebe­dev L. P., Ren­don L. A. Accel­er­a­tion waves and ellip­tic­ity in ther­mo­elas­tic microp­o­lar media. Arch. Appl. Mech. 2010. 80. No 3. Pp. 217227. DOI 10.1007/s00419-0090314-1.
  42. Altenbach H., Ere­meyev V.A., Lebe­dev L. P. On the exis­tence of solu­tion in the lin­ear elas­tic­ity with sur­face stresses. Z.Angew. Math. Mech. (ZAMM). 2010. 90. No. 3. Pp. 231240. DOI 10.1002/zamm.200900311.
  43. Ere­meyev V. A., Moro­zov N. F. The effec­tive stiff­ness of a nanoporous rod. Dok­lady Physics, 2010, 55, No. 6. 279282. (Trans­la­tion of Еремеев В.А., Морозов Н.Ф. Об эффективной жесткости нанопористого стержня /​/​Доклады РАН. 2010. Т. 432. No. 4. С. 473476.)
  44. Ere­meyev V. A., Ivanova E.A., Indeit­sev D.A. Wave processes in nanos­truc­tures formed by nan­otube arrays or nano­size crys­tals. Jour­nal of Applied Mechan­ics and Tech­ni­cal Physics, 2010, 51, No. 4, 569578 (Trans­la­tion from Prik­lad­naya Mekhanika i Tekhnich­eskaya Fizika, Vol. 51, No. 4, pp. 143154, July – August, 2010).
  45. Гирченко А.А., Еремеев В.А., Морозов Н.Ф. Моделирование спиральных нанопленок с пьезоэлектрическими свойствами /​/​Физ. мезомех. — 2010. — Т. 13. — № 2. — С. 510 (A.A. Girchenko, V.A. Ere­meev and N.F. Moro­zov, Mod­el­ing of spi­ral nanofilms with piezo­elec­tric prop­er­ties, Phys­i­cal Meso­me­chan­ics, 2011, 14, No. 12, 1015).
  46. Altenbach H., Ere­meyev V. A., Moro­zov N. F. On equa­tions of the lin­ear the­ory of shells with sur­face stresses taken into account. Mechan­ics of Solids, 2010, Vol. 45, No. 3, pp. 331342. (trans­lated from H. Altenbach, V.A. Ere­meev, and N.F. Moro­zov, Izvestiya Akademii Nauk. Mekhanika Tver­dogo Tela, 2010, No. 3, pp. 3044).
  47. Altenbach H., Ere­meyev V.A. On the effec­tive stiff­ness of plates made of hyper­e­las­tic mate­ri­als with ini­tial stresses. Inter­na­tional Jour­nal of Non-​Linear Mechan­ics. 2010. 45. No 10. 976981. DOI: 10.1016/j.ijnonlinmec.2010.04.007
  48. Altenbach H., Ere­meyev V.A., Kutschke A., Nau­menko K. Con­ser­va­tion laws and pre­dic­tion meth­ods for stress con­cen­tra­tion fields. Acta Mechan­ica. 2011. 218. No 34. 349355. DOI 10.1007/s00707-0100425-3
  49. Ere­meyev, V.A., Lebe­dev, L.P. Exis­tence the­o­rems in the lin­ear the­ory of microp­o­lar shells. Z. Angew. Math. Mech. (ZAMM). 2011, 91, No. 6, 468476. DOI: 10.1002/zamm.201000204
  50. Altenbach, H., Ere­meyev, V.A., Lebe­dev L.P. On the spec­trum and stiff­ness of an elas­tic body with sur­face stresses. Z.Angew. Math. Mech. (ZAMM). 2011, 91, No 9. 699710. DOI: 10.1002/zamm.201000214
  51. Lebe­dev, L.P., Ere­meyev, V.A. Aca­d­e­mi­cian Iosif I. Vorovich. Z.Angew. Math. Mech. (ZAMM). 2011, 91, No. 6, 429432. DOI: 10.1002/zamm.201000200
  52. Altenbach, H., Ere­meyev, V.A. On the shell the­ory on the nanoscale with sur­face stresses. Inter­na­tional Jour­nal of Engi­neer­ing Sci­ence. 2011. 49. No 12. 12941301. doi:10.1016/j.ijengsci.2011.03.011
  53. Ere­meyev, V. A., Pietraszkiewicz, W. Ther­mo­me­chan­ics of shells under­go­ing phase tran­si­tion. Jour­nal of the Mechan­ics and Physics of Solids. 2011. 59, No 7. 13951412. doi:10.1016/j.jmps.2011.04.005
  54. Bîr­san, M., Altenbach, H., Sad­owski, T., Ere­meyev, V.A., Pietras, D. Defor­ma­tion analy­sis of func­tion­ally graded beams by the direct approach. Com­pos­ites Part B: Engi­neer­ing. 2012. 43, No 3. 13151328. doi:10.1016/j.compositesb.2011.09.003
  55. Altenbach, H., Bîr­san, M., Ere­meyev, V.A. On a ther­mo­dy­namic the­ory of rods with two tem­per­a­ture fields. Acta Mechan­ica. 2012. 223. No 8. 15831596. doi: 10.1007/s00707-0120632-1
  56. Altenbach, H., Ere­meyev, V.A., Moro­zov, N.F. Sur­face vis­coelas­tic­ity and effec­tive prop­er­ties of thin-​walled struc­tures at the nanoscale. Inter­na­tional Jour­nal of Engi­neer­ing Sci­ence. 2012. 59. 8389 http://​dx​.doi​.org/​10​.​1016​/​j​.​i​j​e​n​g​s​c​i​.​2012​.​03​.​004
  57. Ere­meyev, V. A., Pietraszkiewicz, W. Mate­r­ial sym­me­try group of the non-​linear polar-​elastic con­tin­uum. Inter­na­tional Jour­nal of Solids and Struc­tures. 2012. 49, No 14. 19932005 http://​dx​.doi​.org/​10​.​1016​/​j​.​i​j​s​o​l​s​t​r​.​2012​.​04​.​007
  58. Girchenko, A.A., Ere­meyev, V.A., and Altenbach H. Inter­ac­tion of a heli­cal shell with a non­lin­ear vis­cous fluid. Inter­na­tional Jour­nal of Engi­neer­ing Sci­ence. 2012. 61. 5358. http://​dx​.doi​.org/​10​.​1016​/​j​.​i​j​e​n​g​s​c​i​.​2012​.​06​.​009
  59. Altenbach, H., Ere­meyev, V.A., Ivanova, E.A., Moro­zov, N.F.  Bend­ing of three-​layer plate with near-​zero trans­verse shear stiff­ness (in Russ­ian). Phys­i­cal Meso­me­chan­ics. 2012. 15. No 6. 1519.
  60. Altenbach, H., Ere­meyev, V.A. Large Defor­ma­tions of Inelas­tic Shells. Key Engi­neer­ing Mate­ri­als. 2013. 535536. 7679. doi:10.4028/www.scientific.net/KEM.535536.76
  61. Ere­meyev, V.A., Lebe­dev, L.P. Exis­tence of weak solu­tions in elas­tic­ity. Math­e­mat­ics and Mechan­ics of Solids. 2013. 18. No. 2. 204217. doi: 10.1177÷1081286512462187
  62. Rosi, G., Gior­gio, I., Ere­meyev, V.A. Prop­a­ga­tion of lin­ear com­pres­sion waves through plane inter­fa­cial lay­ers and mass adsorp­tion in sec­ond gra­di­ent flu­ids. Z. Angew. Math. Mech. (ZAMM). 2013. 93. No 12, 914927; DOI 10.1002/zamm.201200285
  63. Еремеев В.А., Иванова Е.А., Морозов Н.Ф. Некоторые задачи наномеханики. Физ. мезомеханика. 2013. Т. 16. № 4. С. 6773. (Ere­meyev, V.A., Ivanova, E.A., Moro­zov, N. F. Some prob­lems of nanome­chan­ics. Phys­i­cal Meso­me­chan­ics. 2014. 17(1). 2329)
  64. Альтенбах Х., Еремеев В.А., Наседкин А.В. Нестационарные задачи для пьезоэлектрических тел с поверхностными пленками. Теоретическая и прикладная механика. 2013. Донецк: Донецкий нац. ун-​т. Вып. 6 (52). С. 115124. (Altenbach H., Ere­meyev V. A., Nased­kin A. V. Tran­sient prob­lems for piezo­elec­tric bod­ies with sur­face films /​/​The­o­ret­i­cal and Applied Mechan­ics. 2013. No. 6(52). Donetsk: Donetsk National Uni­ver­sity, 2013. P. 115124). ISSN 01364545.
  65. Ere­meyev, V. A., Pietraszkiewicz, W. Edi­to­r­ial: Refined the­o­ries of plates and shells. Z. Angew. Math. Mech. (ZAMM). 2014. 94(12). 56. DOI: 10.1002/zamm.201300148
  66. Nau­menko, K., Ere­meyev, V.A. A layer-​wise the­ory for lam­i­nated glass and pho­to­voltaic pan­els. Com­pos­ite Struc­tures, 2014. 112, 283291. http://​dx​.doi​.org/​10​.​1016​/​j​.​c​o​m​p​s​t​r​u​c​t​.​2014​.​02​.​009
  67. Ere­meyev, V.A., Lebe­dev, L.P., Ogden, R.W. Leonid M. Zubov: A life devoted to non­lin­ear mechan­ics. Inter­na­tional Jour­nal of Engi­neer­ing Sci­ence, 2014. 80, 13. http://​dx​.doi​.org/​10​.​1016​/​j​.​i​j​e​n​g​s​c​i​.​2014​.​03​.​005
  68. Altenbach, H., Ere­meyev, V.A. Vibra­tion analy­sis of non-​linear 6-​parameter pre­stressed shells. Mec­ca­nica, 2014. 49(8), 17511761. doi: 10.1007/s11012-0139845-1
  69. Nased­kin, A.V., Ere­meyev, V.A. Har­monic vibra­tions of nano­sized piezo­elec­tric bod­ies with sur­face effects. Z. Angew. Math. Mech. (ZAMM). 2014. 94(10), 878892. DOI: 10.1002/zamm.201300085
  70. Ere­meyev, V.A., Altenbach, H. Equi­lib­rium of a second-​gradient fluid and an elas­tic solid with sur­face stresses. Mec­ca­nica, 2014. 49(11), 26352643. doi: 10.1007/s 1101201398513
  71. Altenbach, H., Ere­meyev, V.A. Strain rate ten­sors and con­sti­tu­tive equa­tions of inelas­tic microp­o­lar mate­ri­als. Inter­na­tional Jour­nal of Plas­tic­ity, 2014. 63. 317. doi: 10.1016/j.ijplas.2014.05.009
  72. Nased­kin, A.V., Ere­meyev, V.A. Mod­el­ing of nano­sized piezo­elec­tric and mag­ne­to­elec­tric bod­ies with sur­face effects. AIP Con­fer­ence Pro­ceed­ings, 2014, 1627, 7075
  73. Auf­fray N., dell’Isola F., Ere­meyev V., Madeo A., Rosi, G. Ana­lyt­i­cal con­tin­uum mechan­ics à la Hamilton-​Piola: least action prin­ci­ple for sec­ond gra­di­ent con­tinua and cap­il­lary flu­ids. Math­e­mat­ics and Mechan­ics of Solids. 2015. 20 (4), 375417. doi:10.1177/1081286513497616 (http://​arxiv​.org/​a​b​s​/​1305​.​6744, 44 pp.)
  74. Ere­meyev, V.A., Ivanova, E.A., Moro­zov, N.F. On free oscil­la­tions of an elas­tic solids with ordered arrays of nano-​sized objects. Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics, 2015. 27. No 45. 583607. DOI 10.1007/s00161-0140343-z
  75. Ere­meyev, V.A., Nau­menko, K. A rela­tion­ship between effec­tive work of adhe­sion and peel force for thin hyper­e­las­tic films under­go­ing large defor­ma­tion. Mechan­ics Research Com­mu­ni­ca­tions. 2015. 69. 2426. doi:10.1016/j.mechrescom.2015.06.001
  76. Abali, E. B., Müller, H. W., Ere­meyev, V. A. Strain gra­di­ent elas­tic­ity with geo­met­ric non­lin­ear­i­ties and its com­pu­ta­tional eval­u­a­tion. Mechan­ics of Advanced Mate­ri­als and Mod­ern Processes. 2015, 1:4. 111 doi: 10.1186/s40759-0150004-3
  77. Ere­meyev, V.A., Lebe­dev, L.P., Cloud, M.J. The Rayleigh and Courant vari­a­tional prin­ci­ples in the six-​parameter shell the­ory. Math­e­mat­ics and Mechan­ics of Solids. 2015. 20. No 7. 806822. doi: 10.1177 /​1081286514553369
  78. Altenbach, H., Ere­meyev, V.A., Nau­menko, K. On the use of the first order shear defor­ma­tion plate the­ory for the analy­sis of three-​layer plates with thin soft core layer. Z. Angew. Math. Mech. (ZAMM). 2015. 95:10, 10041011. DOI: 10.1002/zamm.201500069
  79. Ere­meev, V.A., Nased­kin, A.V. Nat­ural vibra­tions of nan­odi­men­sional piezo­elec­tric bod­ies with contact-​type bound­ary con­di­tions. Mechan­ics of Solids. 2015, 50(5) 495507. [Еремеев В.А., Наседкин А.В. О собственных колебаниях наноразмерных пьезоэлектрических тел с граничными условиями контактного типа. Изв. РАН. Механика твердого тела. 2015. 5. С. 1532.]
  80. Altenbach H., Ere­meyev V.A. On the con­sti­tu­tive equa­tions of vis­coelas­tic microp­o­lar plates and shells of dif­fer­en­tial type. Math­e­mat­ics and Mechan­ics of Com­plex Sys­tems. 2015. 3. No 3. 273283.
  81. Ere­meyev, V. A., Porubov, A. V., Placidi, L. Spe­cial issue in honor of Eron L. Aero. Math­e­mat­ics and Mechan­ics of Solids. 2016. 21. No 1. 35. doi: 10.1177 /​1081286515588690
  82. Ere­meyev, V. A., Pietraszkiewicz, W. Mate­r­ial sym­me­try group and con­sti­tu­tive equa­tions of microp­o­lar anisotropic elas­tic solids. Math­e­mat­ics and Mechan­ics of Solids. 2016. 21. No 2. 210221. DOI: 10.1177 /​1081286515582862
  83. Ere­meyev, V.A., Lebe­dev, L.P. Math­e­mat­i­cal study of boundary-​value prob­lems within the frame­work of Steigmann – Ogden model of sur­face elas­tic­ity. Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics. 2016. 28. No 12. 407422. DOI 10.1007/s00161-0150439-0
  84. dell’Isola, F., Ere­meyev, V.A., Schi­avone, P. A spe­cial issue in honor of Prof. David Steigmann. Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics. 2016. 28. No 12. 13. DOI 10.1007/s00161-0150455-0
  85. Ere­meyev, V.A. On effec­tive prop­er­ties of mate­ri­als at the nano– and microscales con­sid­er­ing sur­face effects. Acta Mechan­ica. 2016. 227. No 1. 2942. DOI: 10.1007/s00707-0151427-y
  86. Ere­meyev, V.A., Rosi, G., Naili, S. Surface/​interfacial anti-​plane waves in solids with sur­face energy. Mechan­ics Research Com­mu­ni­ca­tions. 2016. 74. 813. doi:10.1016/j.mechrescom.2016.02.018
  87. Nase, M., Ren­nert, M., Nau­menko, K., Ere­meyev, V.A. Iden­ti­fy­ing traction-​separation behav­ior of self-​adhesive poly­meric films from in situ dig­i­tal images under T-​peeling. Jour­nal of the Mechan­ics and Physics of Solids. 2016. 91. 4055. doi:10.1016/j.jmps.2016.03.001
  88. Gerasi­mov, R.A., Ere­meyev, V.A., Petrova, T.O., Egorov, V.I., Mak­si­mova, O.G., Mak­si­mov, A.V. Com­puter sim­u­la­tion of the mechan­i­cal prop­er­ties of meta­ma­te­ri­als. Jour­nal of Physics: Con­fer­ence Series. 2016. 738(1), Arti­cle num­ber 012100. 5 pp.
  89. Ere­meyev, V. A., Skrzat, A., Vinaku­rava, A. Appli­ca­tion of the microp­o­lar the­ory to the strength analy­sis of bio­ce­ramic mate­ri­als for bone recon­struc­tion. Strength of Mate­ri­als. 2016. 48(4). 573582
  90. Ere­meyev, V. A., Skrzat, A., Sta­chow­icz, F. On finite ele­ment com­pu­ta­tions of con­tact prob­lems in microp­o­lar elas­tic­ity. Advances in Mate­ri­als Sci­ence and Engi­neer­ing. 2016. 2016. Arti­cle ID 9675604, 9 pages. http://​dx​.doi​.org/​10​.​1155​/​2016​/​9675604
  91. Gavrilov, S.N., Ere­meyev, V.A., Pic­cardo, G., Luongo, A. A revis­i­ta­tion of the para­dox of dis­con­tin­u­ous tra­jec­tory for a mass par­ti­cle mov­ing on a taut string. Non­lin­ear Dynam­ics. 2016. 86(4). 22452260. doi:10.1007/s11071-0163080-y
  92. Ere­meyev, V. A., Skrzat, A., Sta­chow­icz, F. On FEM eval­u­a­tion of stress con­cen­tra­tion in microp­o­lar elas­tic mate­ri­als. Nanome­chan­ics Sci­ence and Tech­nol­ogy: An Inter­na­tional Jour­nal 2016. 7(4), 297304.
  93. Gerasi­mov, R. A., Ere­meyev, V. A., Petrova, T. O., Egorov, V. I., Mak­si­mova, O. G., Mak­si­mov, A. V. Study of mechan­i­cal prop­er­ties of fer­ro­electrics meta­ma­te­ri­als using com­puter sim­u­la­tion. Fer­ro­electrics, 2017. 508(1), 151160. doi 10.1080/00150193.2017.1289767
  94. Altenbach, H., Ere­meyev, V.A. On the elas­tic plates and shells with resid­ual sur­face stresses. Pro­ce­dia IUTAM, 2017. 21, 2532 (2016 IUTAM Sym­po­sium on Nanoscale Phys­i­cal Mechan­ics, Wan­lin Guo (Ed.)). doi https://​doi​.org/​10​.​1016​/​j​.​p​i​u​t​a​m​.​2017​.​03​.​033.
  95. Nau­menko, K., Ere­meyev, V.A. A layer-​wise the­ory of shal­low shells with thin soft core for lam­i­nated glass and pho­to­voltaic appli­ca­tions. Com­pos­ite struc­tures, 2017. 178, 434446. https://​doi​.org/​10​.​1016​/​j​.​c​o​m​p​s​t​r​u​c​t​.​2017​.​07​.​007
  96. Ere­meyev, V.A., Skrzat, A., Sta­chow­icz, F., Vinaku­rava, A. On strength analy­sis of highly porous mate­ri­als within the frame­work of the microp­o­lar elas­tic­ity. Pro­ce­dia Struc­tural Integrity, 2017, 5C, 446451.
  97. Ere­meyev, V.A., Skrzat, A., Sta­chow­icz, F. Lin­ear microp­o­lar elas­tic­ity analy­sis of stresses in bones under sta­tic loads. Strength of Mate­ri­als. 2017. 49(4). 575585. https://doi.org/10.1007/s11223-0179901-5
  98. Ere­meyev, V.A., dell’Isola, F., Boutin, C., Steigmann, D. Lin­ear Pan­to­graphic Sheets: Exis­tence and Unique­ness of Weak Solu­tions. J. Elas­tic­ity. 2018. 132. 175196. doi 10.1007/s10659-0179660-3
  99. Ere­meyev, V.A., Lebe­dev, L.P., Cloud, M. J. Accel­er­a­tion waves in the non­lin­ear micro­mor­phic con­tin­uum. Mechan­ics Research Com­mu­ni­ca­tions, 2018. 93, 7074. https://​doi​.org/​10​.​1016​/​j​.​m​e​c​h​r​e​s​c​o​m​.​2017​.​07​.​004
  100. Wiech, J., Ere­meyev, V.A., Gior­gio, I. Vir­tual spring damper method for non­ho­lo­nomic robotic swarm self-​organization and leader fol­low­ing. Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics. 2018. 30(5). 10911102 https://doi.org/10.1007/s00161-0180664-4
  101. Ere­meyev, V., Wiech, J. Metoda samoor­ga­ni­za­cji i podąża­nia za lid­erem roju nieho­lo­nom­icznych robotów mobil­nych z wyko­rzys­taniem wirtu­al­nych ele­men­tów sprężysto-​tłumiących (Self-​organization and leader fol­low­ing method of non­ho­lo­nomic mobile robots based on vir­tual springs and dampers). Przegląd Mechan­iczny. 2018, LXXVII, No 5. 2833. ISSN 00332259, e-​ISSN 24508209. doi 10.15199/148.2018.5.2
  102. Ere­meyev, V.A. On the mate­r­ial sym­me­try group for micro­mor­phic media with appli­ca­tions to gran­u­lar mate­ri­als. Mechan­ics Research Com­mu­ni­ca­tions. 2018. 94. 812. doi: 10.1016/j.mechrescom.2018.08.017
  103. Ere­meyev, V.A. On the pecu­liar­i­ties of anti-​plane sur­face waves prop­a­ga­tion for media with microstruc­tured coat­ing. MATEC Web of Con­fer­ences. XIV Inter­na­tional Scientific-​Technical Con­fer­ence “Dynamic of Tech­ni­cal Sys­tems” (DTS-​2018). 2018. 226, 03020. 15. https://​doi​.org/​10​.​1051​/​m​a​t​e​c​c​o​n​f​/​201822603020
  104. Еремеев В.А. Об одной нелинейной модели сетчатой оболочки. Изв. РАН. МТТ. 2018. № 4. С. 127133. (Eng­lish Trans­la­tion: Ere­meyev, V.A. A non­lin­ear prob­lem of a mesh shell. Mechan­ics of Solids. 53(4), 464469. https://​doi​.org/​10​.​3103​/​S​002565441804012​X
  105. Chróś­cielewski, J., Schmidt, R., Ere­meyev, V.A. Non­lin­ear finite ele­ment mod­el­ing of vibra­tion con­trol of plane rod-​type struc­tural mem­bers with inte­grated piezo­elec­tric patches. Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics. 2019. 31(1). 147188. https://doi.org/10.1007/s00161-0180672-4
  106. Aßmus, M., Nau­menko, K., Öch­sner, A., Ere­meyev, V. A., Altenbach, H. A Gen­er­al­ized Frame­work Towards Struc­tural Mechan­ics of Three-​layered Com­pos­ite Struc­tures. Tech­nis­che Mechanik. 2019. 39(2). 202219.
  107. Ere­meyev, V.A., Rosi, G., Naili, S. Com­par­i­son of anti-​plane sur­face waves in strain-​gradient mate­ri­als and mate­ri­als with sur­face stresses. Math­e­mat­ics and Mechan­ics of Solids. 2019. 24(8), 25262535. https://​doi​.org/​10​.​1177​/​1081286518769960
  108. Andreeva, D., Mis­zuris, W., Mishuris, G., Ere­meyev, V.A. On antiplane defor­ma­tions of an elas­tic mate­r­ial with rigid fibers con­sid­er­ing sur­face energy and non-​perfect con­tact. Nanoscience and Tech­nol­ogy: An Inter­na­tional Jour­nal. 2019. 10(1). 7987. doi: 10.1615/NanoSciTechnolIntJ.2018029070
  109. Ere­meyev, V.A., Sharma, B.L. Anti-​plane sur­face waves in media with sur­face struc­ture: Dis­crete vs. con­tin­uum model. Inter­na­tional Jour­nal of Engi­neer­ing Struc­tures. 2019. 143. 3338 https://​doi​.org/​10​.​1016​/​j​.​i​j​e​n​g​s​c​i​.​2019​.​06​.​007
  110. dell’Isola, F., Seppecher, P., Alib­ert, J.J. et al. Pan­to­graphic meta­ma­te­ri­als: an exam­ple of math­e­mat­i­cally dri­ven design and of its tech­no­log­i­cal chal­lenges. Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics. 2019. 31(4) 851884. https://doi.org/10.1007/s00161-0180689-8
  111. Fer­retti, M., Gavrilov, S.N., Ere­meyev, V.A., Luongo, A. Non­lin­ear pla­nar mod­el­ing of mas­sive taut strings trav­elled by a force-​driven point-​mass. Non­lin­ear Dynam­ics. 2019. 97(4) 22012218. https://​doi​.org/​10​.​1007​/​s​11071​-​01905117-​z
  112. Mikha­sev, G.I., Ere­meyev, V.A., Wilde, K., Maevskaya, Sv. Assess­ment of dynamic char­ac­ter­is­tics of thin cylin­dri­cal sand­wich pan­els with mag­ne­torhe­o­log­i­cal core. Jour­nal of Intel­li­gent Mate­r­ial Sys­tems and Struc­tures. 2019. 30(1819). 27482769 https://​doi​.org/​10​.​1177​/​1045389​X​19873423
  113. Sharma, B.L., Ere­meyev, V.A. Wave trans­mis­sion across sur­face inter­faces in lat­tice struc­tures. Inter­na­tional Jour­nal of Engi­neer­ing Struc­tures. 2019. 145. 116. 103173 https://​doi​.org/​10​.​1016​/​j​.​i​j​e​n​g​s​c​i​.​2019​.​103173
  114. Ere­meyev, V.A., Konopińska-​Zmysłowska, V. On the cor­re­spon­dence between two– and three-​dimensional Eshelby ten­sors. Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics. 2019. 31(6) 16151625. https://​doi​.org/​10​.​1007​/​s​00161​-​01900754-​6
  115. Ere­meyev, V.A., Alzahrani, F.S., Caz­zani, A., dell’Isola, F., Hay­att, T., Turco, E., Konopińska-​Zmysłowska, V. On exis­tence and unique­ness of weak solu­tions for lin­ear pan­to­graphic beam lat­tices mod­els. Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics. 2019. 31(6). 18431861. https://​doi​.org/​10​.​1007​/​s​00161​-​01900826-​7
  116. Altenbach, H., Ere­meyev, V.A. Gen­er­al­ized con­tinua with appli­ca­tions: Euromech Solid Mechan­ics Con­fer­ence 2018. Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics. 2019. 31(6) 15711572. https://​doi​.org/​10​.​1007​/​s​00161​-​01900831-​w
  117. Ere­meyev, V.A. Two– and three-​dimensional elas­tic net­works with rigid junc­tions: mod­el­ing within the the­ory of microp­o­lar shells and solids. Acta Mechan­ica, 2019. 230(11): 38753887, DOI 10.1007/s00707-01902527-​3, https://​doi​.org/​10​.​1007​/​s​00707​-​01902527-​3
  118. Zelentsov, V.B., Lap­ina, P.A., Ere­meyev, V.A. Iden­ti­fi­ca­tion of shear mod­u­lus para­me­ters of half-​space inho­mo­ge­neous by depth. AIP Con­fer­ence Pro­ceed­ings, 2019. 2188 (1), 040018. https://​doi​.org/​10​.​1063​/​1​.​5138427
  119. Еремеев, В.А. ОБ ОДНОМ ПОДХОДЕ К ПОСТРОЕНИЮ УРАВНЕНИЙ СОСТОЯНИЯ ФОТОХРОМНЫХ МАТЕРИАЛОВ. Проблемы прочности и пластичности, 2019. 81(2), 249259. https://​doi​.org/​10​.​32326​/​18149146-​201981-​2249-​259
  120. Ere­meyev, V.A. Strongly anisotropic sur­face elas­tic­ity and antiplane sur­face waves. Philo­soph­i­cal Trans­ac­tions of the Royal Soci­ety A, 2020. 378(2162), 20190100. https://​doi​.org/​10​.​1098​/​r​s​t​a​.​2019​.​0100
  121. Gor­bushin, N., Ere­meyev, V.A., Mishuris, G. On stress sin­gu­lar­ity near the tip of a crack with sur­face stresses. Inter­na­tional Jour­nal of Engi­neer­ing Sci­ence, 2020. 146, 117. 103183. https://​doi​.org/​10​.​1016​/​j​.​i​j​e​n​g​s​c​i​.​2019​.​103183
  122. Ere­meyev, V.A. and Turco, E. Enriched buck­ling for beam-​lattice meta­ma­te­r­ials. Mechan­ics Research Com­mu­ni­ca­tions, 2020. 103, 103458. https://​doi​.org/​10​.​1016​/​j​.​m​e​c​h​r​e​s​c​o​m​.​2019​.​103458
  123. Ere­meyev, V.A., Rosi, G., Naili, S. Trans­verse sur­face waves on a cylin­dri­cal sur­face with coat­ing. Inter­na­tional Jour­nal of Engi­neer­ing Sci­ence, 2020. 147. 103188. 17. https://​doi​.org/​10​.​1016​/​j​.​i​j​e​n​g​s​c​i​.​2019​.​103188
  124. Volkov, I.A., Igum­nov, L.A., dell’Isola, F., Litvinchuk, S., Yu., Ere­meyev, V.A. A con­tin­ual model of a dam­aged medium used for ana­lyz­ing fatigue life of poly­crys­talline struc­tural alloys under ther­mal – mechan­i­cal load­ing. Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics. 2020. 32(1), 229245. https://​doi​.org/​10​.​1007​/​s​00161​-​01900795-​x
  125. Rahali, Y., Ere­meyev, V.A., Gang­hof­fer, J.F. Sur­face effects of net­work mate­ri­als based on strain gra­di­ent homog­e­nized media. Math­e­mat­ics and Mechan­ics of Solids. 2020. 25(2) 389406. https://​doi​.org/​10​.​1177​/​1081286519877684
  126. Malikan, M., Krashenin­nikov, M., Ere­meyev, V.A. Tor­sional sta­bil­ity capac­ity of a nano-​composite shell based on a non­lo­cal strain gra­di­ent shell model under a three-​dimensional mag­netic field. Inter­na­tional Jour­nal of Engi­neer­ing Sci­ence, 2020. 148. 103210. https://​doi​.org/​10​.​1016​/​j​.​i​j​e​n​g​s​c​i​.​2019​.​103210
  127. Malikan, M., Ere­meyev, V.A. Post-​critical buck­ling of trun­cated con­i­cal car­bon nan­otubes con­sid­er­ing sur­face effects embed­ding in a non­lin­ear Win­kler sub­strate using the Rayleigh-​Ritz method. Mate­ri­als Research Express. 2020. 7. 025005. 117. https://​doi​.org/​10​.​1088​/​20531591/​ab691c
  128. Ere­meyev, V.A. Gang­hof­fer, J.-F., Konopińska-​Zmysłowska, V., Uglov, N. S. Flex­o­elec­tric­ity and appar­ent piezo­elec­tric­ity of a pan­to­graphic micro-​bar. Inter­na­tional Jour­nal of Engi­neer­ing Sci­ence, 2020. 149. 103213. https://​doi​.org/​10​.​1016​/​j​.​i​j​e​n​g​s​c​i​.​2020​.​103213
  129. Malikan, M., Ere­meyev, V.A. On the Dynam­ics of a Visco – Piezo – Flex­o­elec­tric Nanobeam. Sym­me­try, 2020. 12(4), 643, 121. https://​doi​.org/​10​.​3390​/​s​y​m​12040643
  130. Zelentsov, V.B., Polina A. Lap­ina, P.A., Mitrin, B.I., Ere­meyev, V.A. Char­ac­ter­i­za­tion of the func­tion­ally graded shear mod­u­lus of a half-​space. Math­e­mat­ics, 2020, 8(4), 640; 118. https://​doi​.org/​10​.​3390​/​m​a​t​h​8040640
  131. Skrzat, A., Ere­meyev, V.A. On the effec­tive prop­er­ties of foams in the frame­work of the cou­ple stress the­ory. Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics, 2020, 32(6); 17791801. https://​doi​.org/​10​.​1007​/​s​00161​-​02000880-​6
  132. Chróś­cielewski, J., dell’Isola, F., Ere­meyev, V.A., Sabik, A. On rota­tional insta­bil­ity within the non­lin­ear six-​parameter shell the­ory. Inter­na­tional Jour­nal of Solids and Struc­tures, 2020. 196197. 179189. doi: https://​doi​.org/​10​.​1016​/​j​.​i​j​s​o​l​s​t​r​.​2020​.​04​.​030
  133. Bragov, A. M., Igum­nov, L. A., Kon­stan­ti­nov, A. Yu., Lomunov, A. K. Rusin, E. E., Ere­meyev, V. A. Exper­i­men­tal analy­sis of wear resis­tance of com­pacts of fine-​dispersed iron pow­der and tung­sten mono­car­bide nanopow­der pro­duced by impulse press­ing. Wear. 2020, 456457, 203358. https://​doi​.org/​10​.​1016​/​j​.​w​e​a​r​.​2020​.​203358
  134. Malikan, M., Ere­meyev, V.A. A new hyperbolic-​polynomial higher-​order elas­tic­ity the­ory for mechan­ics of thick FGM beams with imper­fec­tion in the mate­r­ial com­po­si­tion. Com­pos­ite Struc­tures. 2020. 248, 112486. 16pp. https://​doi​.org/​10​.​1016​/​j​.​c​o​m​p​s​t​r​u​c​t​.​2020​.​112486
  135. Dast­jerdi, S., Akgöz, B., Civalek, Ö., Malikan, M., Ere­meyev, V. A. On the non-​linear dynam­ics of torus-​shaped and cylin­dri­cal shell struc­tures. Inter­na­tional Jour­nal of Engi­neer­ing Sci­ence. 2020. 156, 103371. https://​doi​.org/​10​.​1016​/​j​.​i​j​e​n​g​s​c​i​.​2020​.​103371
  136. Malikan, M., Ere­meyev, V.A. On non­lin­ear bend­ing study of a piezo-​flexomagnetic nanobeam based on an analytical-​numerical solu­tion. Nano­ma­te­ri­als. 2020. 10. 1762, 22pp. doi:10.3390/nano10091762
  137. Malikan, M., Uglov, N. S., Ere­meyev, V.A. On insta­bil­i­ties and post-​buckling of piezo­mag­netic and flex­o­mag­netic nanos­truc­tures. Inter­na­tional Jour­nal of Engi­neer­ing Sci­ence. 2020. 157, 103395, 16pp. https://​doi​.org/​10​.​1016​/​j​.​i​j​e​n​g​s​c​i​.​2020​.​103395
  138. Ere­meyev V. A., dell’Isola F. Weak Solu­tions within the Gradient-​Incomplete Strain-​Gradient Elas­tic­ity. Lobachevskii Jour­nal of Math­e­mat­ics, 2020, 41(10). 19921998. https://​doi​.org/​10​.​1134​/​S​1995080220100078
  139. Ere­meyev, V.A., Konopińska-​Zmysłowska, V. On Dynamic Exten­sion of a Local Mate­r­ial Sym­me­try Group for Microp­o­lar Media. Sym­me­try. 2020, 12(10), 1632, 9pp.; https://​doi​.org/​10​.​3390​/​s​y​m​12101632
  140. Ere­meyev, V.A., Lurie, S.A., Solyaev, Yu. O, dell’Isola, F. On the well posed­ness of sta­tic bound­ary value prob­lem within the lin­ear dilata­tional strain gra­di­ent elas­tic­ity. Z. Angew. Math. Phys. 2020. 71, 182. 16 pp. https://​doi​.org/​10​.​1007​/​s​00033​-​02001395-​5
  141. Malikan, M., Ere­meyev, V.A., Sedighi, H.M. Buck­ling analy­sis of a non-​concentric double-​walled car­bon nan­otube. Acta Mechan­ica. 2020. 231. 50075020. https://​doi​.org/​10​.​1007​/​s​00707​-​02002784-​7
  142. Еремеев В.А., Лебедев Л.П. Изв. РАН. О разрешимости краевых задач теории упругих микрополярных оболочек с жесткими включениями. Механика твердого тела. № 6, 111115. DOI: 10.31857/S0572329920050050 Ere­meyev, V.A., Lebe­dev, L.P. On Solv­abil­ity of Bound­ary Value Prob­lems for Elas­tic Microp­o­lar Shells with Rigid Inclu­sions. Mechan­ics of Solids. 2020. 55, 852856
  143. Dast­jerdi, S., Malikan, M., Ere­meyev, V. A., Akgöz, B., Civalek, Ö. Mechan­i­cal sim­u­la­tion of arti­fi­cial grav­ity in torus-​shaped and cylin­dri­cal space­craft. Acta Astro­nau­tica. 2021. 179. 330344. https://​doi​.org/​10​.​1016​/​j​.​a​c​t​a​a​s​t​r​o​.​2020​.​11​.​00
  144. Mawassy, N., Reda, H., Gang­hof­fer, J.-F., Ere­meyev, V.A., Lakiss, H. A vari­a­tional approach of homog­e­niza­tion of piezo­elec­tric com­pos­ites towards piezo­elec­tric and flex­o­elec­tric effec­tive media. Inter­na­tional Jour­nal of Engi­neer­ing Sci­ence. 2021, 158, 103410. https://​doi​.org/​10​.​1016​/​j​.​i​j​e​n​g​s​c​i​.​2020​.​103410
  145. Mikha­sev, G.I, Boto­gova, M.G., Ere­meyev, V. A. On the influ­ence of a sur­face rough­ness on prop­a­ga­tion of anti-​plane short-​length local­ized waves in a medium with sur­face coat­ing. Inter­na­tional Jour­nal of Engi­neer­ing Sci­ence. 2021. 158. 103428. https://​doi​.org/​10​.​1016​/​j​.​i​j​e​n​g​s​c​i​.​2020​.​103428
  146. Malikan, M., Ere­meyev, V.A. and Żur, K.K., 2020. Effect of axial porosi­ties on flex­o­mag­netic response of in-​plane com­pressed piezo­mag­netic nanobeams. Sym­me­try, 12(12), art no. 1935. https://​doi​.org/​10​.​3390​/​s​y​m​12121935
  147. Aßmus, M., Ere­meyev, V. A., Öch­sner, A. Fore­word. Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics. 2021. 33(4), 873875. https://​doi​.org/​10​.​1007​/​s​00161​-​02100975-​8
  148. Ere­meyev, V.A., Pietraszkiewicz, W. Non­lin­ear resul­tant the­ory of shells account­ing for ther­mod­if­fu­sion. Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics. 2021. 33(4), 893909. https://​doi​.org/​10​.​1007​/​s​00161​-​02000927-​8
  149. Malikan, M., Wiczen­bach, T., Ere­meyev, V.A. On ther­mal sta­bil­ity of piezo-​flexomagnetic microbeams con­sid­er­ing dif­fer­ent tem­per­a­ture dis­tri­b­u­tions. Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics. 2021. 33(4), 12811297. https://​doi​.org/​10​.​1007​/​s​00161​-​02100971-​y
  150. Ere­meyev, V.A., Caz­zani, A., dell’Isola, F. On non­lin­ear dilata­tional strain gra­di­ent elas­tic­ity. Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics. 2021. 33(4), 893909. 14291463. https://​doi​.org/​10​.​1007​/​s​00161​-​02100993-​6
  151. Ziólkowski, P.J., Ochrymiuk, T., Ere­meyev, V.A. Adap­ta­tion of the arbi­trary Lagrange – Euler approach to fluid – solid inter­ac­tion on an exam­ple of high veloc­ity flow over thin platelet. Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics, 2021. 33(6), 23012314 (2021) https://​doi​.org/​10​.​1007​/​s​00161​-​01900850-​7
  152. Malikan, M., Ere­meyev, V.A. On the geo­met­ri­cally non­lin­ear vibra­tion of a piezo-​flexomagnetic nan­otube. Math­e­mat­i­cal Meth­ods in the Applied Sci­ences. 2020. https://​doi​.org/​10​.​1002​/​m​m​a​.​6758
  153. Ere­meyev, V.A., Lebe­dev, L.P., Cloud, M.J. On weak solu­tions of bound­ary value prob­lems within the sur­face elas­tic­ity of N th order. Z Angew Math Mech. 2021. 101(3), 111; e202000378. https://​doi​.org/​10​.​1002​/​z​a​m​m​.​202000378
  154. Gol­makani, M.E., Malikan, M., Pour, S.G., Ere­meyev, V.A. Bend­ing analy­sis of func­tion­ally graded nanoplates based on a higher-​order shear defor­ma­tion the­ory using dynamic relax­ation method. Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics. 2021. https://​doi​.org/​10​.​1007​/​s​00161​-​02100995-​4
  155. Abouel­re­gal, A.E., Mohammad-​Sedighi, H., Shi­razi, A.H., Malikan, M., Ere­meyev, V.A. Com­pu­ta­tional analy­sis of an infi­nite magneto-​thermoelastic solid peri­od­i­cally dis­persed with vary­ing heat flow based on non-​local Moore – Gib­son – Thomp­son approach. Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics. 2021. https://​doi​.org/​10​.​1007​/​s​00161​-​02100998-​1
  156. Malikan, M., Ere­meyev, V.A. Flex­o­mag­netic response of buck­led piezo­mag­netic com­pos­ite nanoplates. Com­pos­ite Struc­tures. 2021. 267, art no 113932 https://​www​.sci​encedi​rect​.com/​s​c​i​e​n​c​e​/​a​r​t​i​c​l​e​/​p​i​i​/​S​0263822321003925
  157. Gol­makani, M.E., Wiczen­bach, T., Malikan, M., Mahoori, S.M., Ere­meyev, V.A. Exper­i­men­tal and Numer­i­cal Inves­ti­ga­tion of Ten­sile and Flex­ural Behav­ior of Nan­oclay Wood-​Plastic Com­pos­ite. Mate­ri­als. 2021. 14(11), 2773; https://​doi​.org/​10​.​3390​/​m​a​14112773
  158. Malikan, M., Ere­meyev, V.A. Effect of sur­face on the flex­o­mag­netic response of fer­roic com­pos­ite nanos­truc­tures; non­lin­ear bend­ing analy­sis. Com­pos­ite Struc­tures. 2021. 271, art no 114179. https://​doi​.org/​10​.​1016​/​j​.​c​o​m​p​s​t​r​u​c​t​.​2021​.​114179
  159. Dast­jerdi, S., Malikan, M., Ere­meyev, V.A., Akgöz, B., Civalek, Ö. On the gen­er­al­ized model of shell struc­tures with func­tional cross-​sections. Com­pos­ite Struc­tures. 2021. 272, art no 114192. https://​doi​.org/​10​.​1016​/​j​.​c​o​m​p​s​t​r​u​c​t​.​2021​.​114192
  160. Gol­makani, M.E., Wiczen­bach, T., Malikan, M., Ali­ak­bari, R., Ere­meyev, V.A. Inves­ti­ga­tion of Wood Flour Size, Aspect Ratios, and Injec­tion Mold­ing Tem­per­a­ture on Mechan­i­cal Prop­er­ties of Wood Flour/​Polyethylene Com­pos­ites. Mate­ri­als. 2021. 14(12), 3406; https://​doi​.org/​10​.​3390​/​m​a​14123406
  161. Ere­meyev, V.A. Local mate­r­ial sym­me­try group for first– and second-​order strain gra­di­ent flu­ids. Math­e­mat­ics and Mechan­ics of Solids. 2021. 26(8), 11731190 https://​doi​.org/​10​.​1177​/​10812865211021640
  162. Ere­meyev, V.A., 2021. Strong ellip­tic­ity con­di­tions and infin­i­tes­i­mal sta­bil­ity within non­lin­ear strain gra­di­ent elas­ticity. Mechan­ics Research Com­mu­ni­ca­tions, 117, 15. art no. 103782. https://​doi​.org/​10​.​1016​/​j​.​m​e​c​h​r​e​s​c​o​m​.​2021​.​103782
  163. Ere­meyev, V.A., dell’Isola, F. On weak solu­tions of bound­ary value prob­lem within the lin­ear dilata­tional strain gra­di­ent elas­tic­ity for poly­he­dral Lip­schitz domains. Math­e­mat­ics and Mechan­ics of Solids. 2021. https://​doi​.org/​10​.​1177​/​10812865211025576
  164. Malikan, M., Ere­meyev, V.A. Flex­o­mag­netic­ity in buck­led shear deformable hard-​magnetic soft struc­tures. Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics. 2021. https://​doi​.org/​10​.​1007​/​s​00161​-​02101034-​y
  165. Nau­menko, K., Ere­meyev, V.A. A non-​linear direct peri­dy­nam­ics plate the­ory. Com­pos­ite Struc­tures. 2022. 279, art no 114728, 17 pp. https://​doi​.org/​10​.​1016​/​j​.​c​o​m​p​s​t​r​u​c​t​.​2021​.​114728

Некоторые статьи в трудах конференций и коллективных монографиях (с 2005 г.)

  1. Ere­meyev V.A. Non­lin­ear microp­o­lar shells: the­ory and appli­ca­tions. Shell Struc­tures: The­ory and Appli­ca­tions. W. Pietraszkiewicz and C. Szym­czak (eds.). Lon­don et al., Tay­lor & Fran­cis, 2005. 1118.
  2. Altenbach H., Ere­meyev V.A. On the appli­ca­tions of Zhilin’s the­ory of sim­ple shells to plates made of func­tion­ally graded mate­ri­als. Proc. XXXVI Sum­mer school-​conf. “Advanced Prob­lems in Mechan­ics” (APM 2008). July, 611, Saint-​Petersburg. 2008. 849.
  3. Altenbach H., Ere­meyev V.A. Effec­tive prop­er­ties of plates made of func­tion­ally graded mate­ri­als. Proc. EUROMECH Col­lo­quium 498. Non­lin­ear Dynam­ics and Smart Struc­tures. Eds. J. Warmin­ski, M.P. Cart­mell, J. Latal­ski. Lublin, 2008. 6770.
  4. Ere­meyev V.A., Altenbach H. On the eigen­fre­quen­cies of an ordered sys­tem of nanoob­jects. Proc. IUTAM Sym­po­sium on Nanomod­el­ling Mate­ri­als and Nanosys­tems. 1922.05.2008. Aal­borg, Den­mark. IUTAM Book­series, Vol. 13. Springer, 2009. R. Pyrz, J.C. Rauhe, Eds, 123132.
  5. Ere­meyev V.A., Altenbach H. Con­fig­u­ra­tional forces in the the­ory of two-​phase plates. Proc. IUTAM Sym­po­sium on Progress in the The­ory and Numer­ics of Con­fig­u­ra­tional Mechan­ics. 2024.10.2008. Erlangen-​Nurnberg, Ger­many. IUTAM Book­series, Vol. 17. Springer, 2009. P. Stein­mann, Ed., 121130.
  6. Ere­meyev V.A., Pietraszkiewicz W. On ten­sion of a two-​phase elas­tic tube. Shell Struc­tures. The­ory and Appli­ca­tions. Vol. 2. W. Pietraszkiewicz, I. Kreja, Eds. Boca Raton, CRC Press, 2010. 6366.
  7. Altenbach H., Ere­meyev V.A. On the shell and plate the­o­ries with sur­face stresses. Shell Struc­tures. The­ory and Appli­ca­tions. Vol. 2. W. Pietraszkiewicz, I. Kreja, Eds. Boca Raton, CRC Press, 2010. 4750.
  8. Zubov L. M., Ere­meyev V.A. Non­lin­ear Saint-​Venant prob­lem of tor­sion and ten­sion of the cylin­dri­cal shell. Shell Struc­tures. The­ory and Appli­ca­tions. Vol. 2. W. Pietraszkiewicz, I. Kreja, Eds. Boca Raton, CRC Press, 2010. 103106.
  9. Altenbach H., Ere­meyev V.A. On the the­o­ries of plates based on the Cosserat approach.Advances in Mechan­ics and Math­e­mat­ics. Vol. 21. Mechan­ics of Gen­er­al­ized Mechan­ics of Gen­er­al­ized Con­tinua, First One Hun­dred Years After the Cosser­ats. Gérard A. Mau­gin and Andrei V. Metrikine (eds). New York: Springer, 2010. 2735.
  10. Pietraszkiewicz W., Ere­meyev V.A. Nat­ural Lagrangian strain mea­sures of the non-​linear Cosserat con­tin­uum. Advances in Mechan­ics and Math­e­mat­ics. Vol. 21. Mechan­ics of Gen­er­al­ized Mechan­ics of Gen­er­al­ized Con­tinua, First One Hun­dred Years After the Cosser­ats. Gérard A. Mau­gin and Andrei V. Metrikine (eds). New York: Springer, 2010. 7986.
  11. Altenbach H., Ere­meyev V.A. Thin-​walled struc­tures made of foams. Cel­lu­lar and Porous Mate­ri­als: Mod­el­ing — Test­ing — Appli­ca­tion. CISM Courses and Lec­ture Notes. Vol. 521. H.Altenbach and A.Oechsner (eds), Springer-​Verlag, Wien, 2010. 167242.
  12. Altenbach H., Ere­meyev V.A. Mechan­ics of Vis­coelas­tic Plates Made of FGMs. Com­pu­ta­tionalMod­el­ling and Advanced Sim­u­la­tions.
    Com­pu­ta­tional Meth­ods in Applied Sci­ences
    , Justín Murín, Vladimír Kom­piš, and Vladimír Kutiš (Eds). Springer Science+Business Media, Dor­drecht, 2011, Vol­ume 24, 3348, DOI: 10.1007/97894-​0070317-​9_​2.
  13. Altenbach H., Ere­meyev V.A., Lebe­dev L.P. Microp­o­lar Shells as Two-​dimensional Gen­er­al­ized Con­tinua Mod­els. In: Advanced Struc­tured Mate­ri­als, Vol. 7, H. Altenbach et al. (eds.), Mechan­ics of Gen­er­al­ized Con­tinua, Springer, Berlin, Hei­del­berg, 2011, pp. 2355. DOI: 10.1007/9783-​64219219-​7_​2.
  14. Ere­meyev V.A., Pietraszkiewicz W. On the non­lin­ear the­ory of two-​phase shells. In: Shell-​like Struc­tures: Non-​classical The­o­ries and Appli­ca­tions.Advanced Struc­tured Mate­ri­als, Vol. 15, H. Altenbach, V.A. Ere­meyev (eds.), Springer, Berlin, Hei­del­berg, 2011, pp. 219232. DOI: 10.1007/9783-​64221855-​2_​16 .
  15. Mee­nen J., Altenbach H., Ere­meyev V., Nau­menko K. A vari­a­tion­ally con­sis­tent deriva­tion of micro­con­tin­uum the­o­ries. In: Shell-​like Struc­tures: Non-​classical The­o­ries and Appli­ca­tions .Advanced Struc­tured Mate­ri­als, Vol. 15, H. Altenbach, V.A. Ere­meyev (eds.), Springer, Berlin, Hei­del­berg, 2011, pp. 571584. DOI: 10.1007/9783-​64221855-​2_​38.
  16. Altenbach, H.; Ere­meyev, V.A. On the inelas­tic con­sti­tu­tive equa­tions of plates and shells made of foams. In: Engi­neer­ing Plas­tic­ity and Its Appli­ca­tions, J. Li, Z. Li, X.-T. Feng, W.B. Lee & H. Zhou (eds). World Sci­en­tific, Sin­ga­pore, 2011. pp. 8690.
  17. Altenbach, H.; Ere­meyev, V.A. Moro­zov, N.F. Mechan­i­cal prop­er­ties of mate­ri­als con­sid­er­ing sur­face effects. In: IUTAM Sym­po­sium on Sur­face Effects in the Mechan­ics of Nano­ma­te­ri­als and Het­erostruc­tures. IUTAM Book­series (closed), Springer, 2013, Vol­ume 31, pp. 105115, doi: 10.1007/97894-​0074911-​5_​9.
  18. Altenbach H., Ere­meyev V.A. Sur­face Vis­coelas­tic­ity and Effec­tive Prop­er­ties of Mate­ri­als and Struc­tures. In: Advanced Mate­ri­als Mod­el­ling for Struc­tures, Advanced Struc­tured Mate­ri­als, Vol. 19, Altenbach, H. and Kruch, S. (Eds.), Springer, Berlin, Hei­del­berg, 2013, pp. 916.
  19. Altenbach H., Ere­meyev V.A., Lebe­dev L.P. Math­e­mat­i­cal Study of Boundary-​Value Prob­lems of Lin­ear Elas­tic­ity with Sur­face Stresses . In: Sur­face Effects in Solid Mechan­ics, Advanced Struc­tured Mate­ri­als, Vol. 30, Altenbach, H. and Moro­zov, N.F. (Eds.), Springer, Berlin, Hei­del­berg, 2013, pp. 119.
  20. Altenbach H., Ere­meyev V.A., Moro­zov N.F. On the Influ­ence of Resid­ual Sur­face Stresses on the Prop­er­ties of Struc­tures at the Nanoscale . In: Sur­face Effects in Solid Mechan­ics, Advanced Struc­tured Mate­ri­als, Vol. 30, Altenbach, H. and Moro­zov, N.F. (Eds.), Springer, Berlin, Hei­del­berg, 2013, pp. 2132.
  21. Nased­kin A.V., Ere­meyev V.A. Spec­tral Prop­er­ties of Piezo­elec­tric Bod­ies with Sur­face Effects . In: Sur­face Effects in Solid Mechan­ics, Advanced Struc­tured Mate­ri­als, Vol. 30, Altenbach, H. and Moro­zov, N.F. (Eds.), Springer, Berlin, Hei­del­berg, 2013, pp. 105121.
  22. Altenbach H., Ere­meyev V.A. On the Con­tin­uum Mechan­ics Approach in Mod­el­ing Nano­sized Struc­tural Ele­ments. In: New Fron­tiers of Nanopar­ti­cles and Nanocom­pos­ite Mate­ri­als, Advanced Struc­tured Mate­ri­als, Vol. 4, Öch­sner, A. and Shokuh­far, A. (Eds.), Springer, Berlin, Hei­del­berg, 2013, pp. 351371.
  23. Altenbach H., Ere­meyev V.A. Shells and Plates with Sur­face Effects. In:Gen­er­al­ized Con­tinua as Mod­els for Mate­ri­als with Multi-​scale Effects or Under Multi-​field Actions , Advanced Struc­tured Mate­ri­als, Vol. 22, Altenbach, H., For­est, S., and Krivtsov, A. (Eds.), Springer, Berlin, Hei­del­berg, 2013, pp. 115.
  24. Ere­meyev V.A., Pietraszkiewicz W. Mate­r­ial Sym­me­try Group and Con­sis­tently Reduced Con­sti­tu­tive Equa­tions of the Elas­tic Cosserat Con­tin­uum. In: Gen­er­al­ized Con­tinua as Mod­els for Mate­ri­als with Multi-​scale Effects or Under Multi-​field Actions , Advanced Struc­tured Mate­ri­als, Vol. 22, Altenbach, H., For­est, S., and Krivtsov, A. (Eds.), Springer, Berlin, Hei­del­berg, 2013, pp. 7790.
  25. Altenbach, H., Ere­meyev, V.A. Actual Devel­op­ments in the Non­lin­ear Shell The­ory — State of the Art and New Appli­ca­tions of the Six-​Parameter Shell The­ory. In: W. Pietraszkiewicz, J.Gorski (eds.) Shell Struc­tures: The­ory and Appli­ca­tions, vol. 3. Tay­lor & Fran­cis, Lon­don, 2014, pp. 312.
  26. Ere­meyev, V.A., Altenbach, H.: Rayleigh vari­a­tional prin­ci­ple and vibra­tions of pre­stressed shells. In: W. Pietraszkiewicz, J.Gorski (eds.) Shell Struc­tures: The­ory and Appli­ca­tions, vol. 3. Tay­lor & Fran­cis, Lon­don, 2014, pp. 285288.
  27. Ere­meyev, V.A., Ivanova, E. A., Altenbach, H., Moro­zov N. F. On effec­tive stiff­ness of a three-​layered plate with a core filled by a cap­il­lary fluid. In: W. Pietraszkiewicz, J.Gorski (eds.) Shell Struc­tures: The­ory and Appli­ca­tions, vol. 3. Tay­lor & Fran­cis, Lon­don, 2014, pp. 8588.
  28. Altenbach, H., Ere­meyev, V.A. Basic equa­tions of con­tin­uum mechan­ics. In: H. Altenbach and A. Öch­sner (eds.), Plas­tic­ity of Pressure-​Sensitive Mate­ri­als, Engi­neer­ing Mate­ri­als, DOI: 10.1007/9783-​64240945-​5_​1, Springer-​Verlag, Berlin, Hei­del­berg, 2014, pp. 147.
  29. Ere­meyev, V.A., Pietraszkiewicz, W. Phase Tran­si­tions in Ther­mo­vis­coelas­tic Shells. In: Ency­clo­pe­dia of Ther­mal Stresses. Het­narski, R. B. (Ed.) Springer, 2014, LXXXIII, 6643 p. In 11 vol­umes. ISBN 9789400727380. Pp. 36673673.
  30. Ere­meyev, V.A. Accel­er­a­tion Waves in Non­lin­ear Ther­mo­elas­tic Microp­o­lar Media. In: Ency­clo­pe­dia of Ther­mal Stresses.Het­narski, R. B. (Ed.) Springer, 2014, LXXXIII, 6643 p. In 11 vol­umes. ISBN 9789400727380, pp. 2127.
  31. Ere­meyev, V.A. Ellip­tic­ity Con­di­tion and Accel­er­a­tion Waves in Non­lin­ear Ther­mo­elas­tic Solids . In: Ency­clo­pe­dia of Ther­mal Stresses. Het­narski, R. B. (Ed.) Springer, 2014, LXXXIII, 6643 p. In 11 vol­umes. ISBN 9789400727380, pp. 12431247.
  32. Auf­fray, N., dell’Isola, F., Ere­meyev V., Madeo, A., Placidi, L., Rosi, G. Least action prin­ci­ple for sec­ond gra­di­ent con­tinua and cap­il­lary flu­ids: a Lagrangian approach fol­low­ing Piola’s point of view. In: The com­plete works of Gabrio Piola: Vol­ume I. Com­mented Eng­lish Trans­la­tion. Francesco dell’Isola, Giulio Maier, Umberto Perego, Ugo Andreaus, Raf­faele Espos­ito, Samuel For­est (Eds). Advanced Struc­tured Mate­ri­als. Vol. 38, Springer, 2014, 816 pp. Pp. 606694.
  33. Ere­meyev, V.A., Altenbach H. On the Direct Approach in the The­ory of Sec­ond Gra­di­ent Plates. In: Shell and Mem­brane The­o­ries in Mechan­ics and Biol­ogy. Advanced Struc­tured Mate­ri­als. Vol. 45, Altenbach, H., Mikha­sev, G. (Eds.). 2015, pp. 147154.
  34. Altenbach H., Ere­meyev, V.A. On the The­o­ries of Plates and Shells at the Nanoscale. In: Shell and Mem­brane The­o­ries in Mechan­ics and Biol­ogy. Advanced Struc­tured Mate­ri­als. Vol. 45, Altenbach, H., Mikha­sev, G. (Eds.). 2015, pp. 2557.
  35. Ere­meyev, V.A. On the effec­tive prop­er­ties of elas­tic mate­ri­als and struc­tures at the micro– and nanoscale con­sid­er­ing var­i­ous mod­els of sur­face elas­tic­ity. In: Mate­ri­als with inter­nal struc­tures. Mul­ti­scale and Mul­ti­field Mod­el­ling and Sim­u­la­tion. Trovalusci, P. (Ed.) Springer Tracts in Mechan­i­cal Engi­neer­ing. Springer Switzer­land, Cham Hei­del­berg New York Dor­drecht Lon­don, 2016, pp. 2941.
  36. Nased­kin, A.V., Ere­meyev, V.A. Some mod­els for nano­sized mag­ne­to­elec­tric bod­ies with sur­face effects. In: Advanced Mate­ri­als: Man­u­fac­tur­ing, Physics, Mechan­ics and Appli­ca­tions. Springer Pro­ceed­ings in Physics, Vol. 175. I. A. Pari­nov, Shun-​Hsyung Chang, V. Yu. Topolov (Eds). 2016, pp. 373391.
  37. Altenbach H., Ere­meyev V.A. On strain rate ten­sors and con­sti­tu­tive equa­tions of inelas­tic microp­o­lar mate­ri­als, In: Gen­er­al­ized Con­tinua as Mod­els for Clas­si­cal and Advanced Mate­ri­als. Advanced Struc­tured Mate­ri­als, Vol. 42, Altenbach, H. and For­est, S. (Eds.), Springer, Berlin, Hei­del­berg, 2016, pp. 113.
  38. Ere­meyev V.A. On equi­lib­rium of a second-​gradient fluid near edges and cor­ner points, In: Advanced Meth­ods of Con­tin­uum Mechan­ics for Mate­ri­als and Struc­tures. Advanced Struc­tured Mate­ri­als, Vol. 60, Nau­menko, K. and Aßmus, M. (Eds.), Springer, Berlin, Hei­del­berg, 2016, pp. 547556.
  39. Altenbach H., Ere­meyev V.A. On the vari­a­tional analy­sis of vibra­tions of pre­stressed six-​parameter shells, In: Com­pu­ta­tional Mod­el­ing, Opti­miza­tion and Man­u­fac­tur­ing Sim­u­la­tion of Advanced Engi­neer­ing Mate­ri­als. Advanced Struc­tured Mate­ri­als, Vol. 49, Pablo Andrés Muñoz-​Rojas (Ed.), Springer, Berlin, Hei­del­berg, 2016, pp. 319. doi 10.1007/9783-​31904265-​7_​1
  40. Altenbach, H., Ere­meyev, V.A. Thin-​Walled Struc­tural Ele­ments: Clas­si­fi­ca­tion, Clas­si­cal and Advanced The­o­ries, New Appli­ca­tions. In: Shell-​like Struc­tures: Advanced The­o­ries and Appli­ca­tions. CISM Courses and Lec­ture Notes. Vol. 572. H. Altenbach and V.A.Eremeyev (eds), Springer-​Verlag, Wien, 2017. pp. 162.
  41. Ere­meyev, V.A., Altenbach, H. Basics of Mechan­ics of Microp­o­lar Shells. In: Shell-​like Struc­tures: Advanced The­o­ries and Appli­ca­tions. CISM Courses and Lec­ture Notes. Vol. 572. H. Altenbach and V.A.Eremeyev (eds), Springer-​Verlag, Wien, 2017. pp. 63111.
  42. Ere­meyev, V.A., Nased­kin, A.V. Math­e­mat­i­cal Mod­els and Finite Ele­ment Approaches for Nano­sized Piezo­elec­tric Bod­ies with Uncoulped and Cou­pled Sur­face Effects, In: Wave Dynam­ics and Com­pos­ite Mechan­ics for Microstruc­tured Mate­ri­als and Meta­ma­te­ri­als. Advanced Struc­tured Mate­ri­als, Vol. 59, M.A. Sum­bat­yan (Ed.), Springer, Berlin, Hei­del­berg, 2017, pp. 118. doi 10.1007/978981-​103797-​9_​1
  43. Gerasi­mov, R.A., Mak­si­mova, O.G., Petrova, T.O., Ere­meyev, V.A., Mak­si­mov, A.V. Ana­lyt­i­cal and Com­puter Meth­ods to Eval­u­ate Mechan­i­cal Prop­er­ties of the Meta­ma­te­ri­als Based on Var­i­ous Mod­els of Poly­meric Chains. In: Wave Dynam­ics and Com­pos­ite Mechan­ics for Microstruc­tured Mate­ri­als and Meta­ma­te­ri­als. Advanced Struc­tured Mate­ri­als, Vol. 59, M.A. Sum­bat­yan (Ed.), Springer, Berlin, Hei­del­berg, 2017, pp. 3569. doi 10.1007/978981-​103797-​9_​3
  44. Ere­meyev, V.A. Accel­er­a­tion Waves in Media with Microstruc­ture, In: Wave Dynam­ics and Com­pos­ite Mechan­ics for Microstruc­tured Mate­ri­als and Meta­ma­te­ri­als. Advanced Struc­tured Mate­ri­als, Vol. 59, M.A. Sum­bat­yan (Ed.), Springer, Berlin, Hei­del­berg, 2017, pp. 123132. doi 10.1007/978981-​103797-​9_​7
  45. Ere­meyev, V.A., Nau­menko, K. On the Mod­els of Three-​Layered Plates and Shells with Thin Soft Core, In: Wave Dynam­ics and Com­pos­ite Mechan­ics for Microstruc­tured Mate­ri­als and Meta­ma­te­ri­als. Advanced Struc­tured Mate­ri­als, Vol. 59, M.A. Sum­bat­yan (Ed.), Springer, Berlin, Hei­del­berg, 2017, pp. 159171. doi 10.1007/978981-​103797-​9_​9
  46. Ere­meyev, V.A. On Non­lo­cal Sur­face Elas­tic­ity and Prop­a­ga­tion of Sur­face Anti-​Plane Waves, In: Mechan­ics for Mate­ri­als and Tech­nolo­gies. Advanced Struc­tured Mate­ri­als, Vol. 46, H. Altenbach, R. V. Gold­stein, E. Murashkin (Eds.), Springer, Berlin, Hei­del­berg, 2017, pp. 153162. doi 10.1007/9783-​31956050-​2_​7
  47. Ere­meyev, V. A., Skrzat, A., Sta­chow­icz, F. On com­pu­ta­tional eval­u­a­tion of stress con­cen­tra­tion using microp­o­lar elas­tic­ity, In: Inter­na­tional Con­fer­ence on Applied Physics, Sys­tem Sci­ence and Com­put­ers (APSAC2016), Sep­tem­ber 2830, Dubrovnik, Croa­tia. Lec­ture Notes in Elec­tri­cal Engi­neer­ing book series (LNEE), vol. 428. Ntal­ia­nis, Klimis and Croitoru, Anca (Eds.), Springer, Cham, 2017, pp. 199205. doi 10.1007/9783-​31953934-​8_​24
  48. Altenbach, H., Ere­meyev, V.A. Bend­ing of a three-​layered plate with sur­face stresses. In: Analy­sis and Mod­el­ling of Advanced Struc­tures and Smart Sys­tems. Altenbach H., Car­rera E., Kulikov G. (eds). Advanced Struc­tured Mate­ri­als, vol 81. Springer, Sin­ga­pore, 2018, pp. 110. doi https://​doi​.org/​10​.​1007​/​978981-​106895-​9_​1
  49. dell’Isola, F., Ere­meyev, V.A. Some Intro­duc­tory and His­tor­i­cal Remarks on Mechan­ics of Microstruc­tured Mate­ri­als, In: dell’Isola, Francesco, Ere­meyev, V.A., Porubov, A.V. (Eds). Advances in Mechan­ics of Microstruc­tured Media and Struc­tures. Advanced Struc­tured Mate­ri­als, Vol. 87. Springer, Cham, 2018, pp. 120. doi https://​doi​.org/​10​.​1007​/​9783-​31973694-​5_​1
  50. Ere­meyev, V.A., dell’Isola, F. A Note on Reduced Strain Gra­di­ent Elas­tic­ity, In: Gen­er­al­ized Mod­els and Non-​classical Approaches in Com­plex Mate­ri­als 1. Altenbach, H., Pouget, J., Rousseau, M., Col­let, B., Miche­litsch, Th. (Eds.) Advanced Struc­tured Mate­ri­als, Vol. 89. Springer, Cham, 2018, pp. 301310. doi https://​doi​.org/​10​.​1007​/​9783-​31972440-​9_​15
  51. Ere­meyev, V.A. On dynamic bound­ary con­di­tions within the lin­ear Steigmann-​Ogden model of sur­face elas­tic­ity and strain gra­di­ent elas­tic­ity. In: Altenbach H., Belyaev A., Ere­meyev V., Krivtsov A., Porubov A. (eds) Dynam­i­cal Processes in Gen­er­al­ized Con­tinua and Struc­tures. Advanced Struc­tured Mate­ri­als, vol 103. Springer, Cham, 2019, pp. 195207. https://​doi​.org/​10​.​1007​/​9783-​03011665-​1_​10
  52. Frei­din, A.B., Ere­meyev, V.A. On Kinetic Nature of Hys­tere­sis Phe­nom­ena in Stress-​Induced Phase Trans­for­ma­tions. In: Altenbach H., Belyaev A., Ere­meyev V., Krivtsov A., Porubov A. (eds) Dynam­i­cal Processes in Gen­er­al­ized Con­tinua and Struc­tures. Advanced Struc­tured Mate­ri­als, vol 103. Springer, Cham, 2019, pp. 223229. https://​doi​.org/​10​.​1007​/​9783-​03011665-​1_​12
  53. Ere­meyev, V.A. On Non-​holonomic Bound­ary Con­di­tions within the Non­lin­ear Cosserat Con­tin­uum. In: Abali B., Altenbach H., dell’Isola F., Ere­meyev V., Öch­sner A. (eds) New Achieve­ments in Con­tin­uum Mechan­ics and Ther­mo­dy­nam­ics. Advanced Struc­tured Mate­ri­als, vol 108. Springer, Cham, 2019, pp. 93104. https://​doi​.org/​10​.​1007​/​9783-​03013307-​8_​7
  54. Altenbach, H., Ere­meyev, V.A. On Non­lin­ear Dynamic The­ory of Thin Plates with Sur­face Stresses. In: Altenbach H., Irschik H., Matveenko V. (eds) Con­tri­bu­tions to Advanced Dynam­ics and Con­tin­uum Mechan­ics. Advanced Struc­tured Mate­ri­als, vol 114. Springer, Cham, 2019, pp. 1926 https://​doi​.org/​10​.​1007​/​9783-​03021251-​3_​2
  55. Ere­meyev, V.A. On Anti-​Plane Sur­face Waves Con­sid­er­ing Highly Anisotropic Sur­face Elas­tic­ity Con­sti­tu­tive Rela­tions. In: Sum­bat­yan, M. (eds) Wave Dynam­ics, Mechan­ics and Physics of Microstruc­tured Meta­ma­te­ri­als. Advanced Struc­tured Mate­ri­als, vol 109. Springer, Cham, 2019, pp. 19. https://​doi​.org/​10​.​1007​/​9783-​03017470-​5_​1
  56. Mak­si­mova, O.G., Petrova, T.O., Ere­meyev, V.A., Egorov, V.I., Baidganov, A.R., Baruz­d­ina, O.G., Mak­si­mov, A.V. Sim­u­la­tion of the Sur­face Struc­ture of Fer­ro­elec­tric Thin Films. In: Sum­bat­yan, M. (eds) Wave Dynam­ics, Mechan­ics and Physics of Microstruc­tured Meta­ma­te­ri­als. Advanced Struc­tured Mate­ri­als, vol 109. Springer, Cham, 2019, pp. 3358. https://​doi​.org/​10​.​1007​/​9783-​03017470-​5_​4
  57. Gerasi­mov, R.A., Petrova, T.O., Ere­meyev, V.A., Max­i­mov, A.V., Max­i­mova, O.G. On the Equa­tions of the Sur­face Elas­tic­ity Model Based on the The­ory of Poly­meric Brushes. In: Sum­bat­yan, M. (eds) Wave Dynam­ics, Mechan­ics and Physics of Microstruc­tured Meta­ma­te­ri­als. Advanced Struc­tured Mate­ri­als, vol 109. Springer, Cham, 2019, pp. 153161. https://​doi​.org/​10​.​1007​/​9783-​03017470-​5_​11
  58. Malikan, M., Ere­meyev, V.A. Free Vibra­tion of Flex­o­mag­netic Nanos­truc­tured Tubes Based on Stress-​driven Non­lo­cal Elas­tic­ity. In: Altenbach H., Chin­cha­l­adze N., Kien­zler R., Müller W. (eds) Analy­sis of Shells, Plates, and Beams. Advanced Struc­tured Mate­ri­als, vol 134. Springer, Cham. 2020, pp. 215226. https://​doi​.org/​10​.​1007​/​9783-​03047491-​1_​12

https://​doi​.org/​10​.​1134​/​S​1995080220100078

Задать вопрос

Декан мехмата Карякин Михаил Игоревич
Карякин Михаил Игоревич

Как нас найти

Мехмат ЮФУ
344090, Ростов-​на-​Дону,
ул. Мильчакова, 8а
cм. на карте или найдите маршрут;
+7 (863) 2975 111;
Факс: +7 (863) 2975 113;
Деканат: к. 111

Группа ВКонтакте

Авторизация